文章目錄

在线阅读

科目名称:高等代数

适用专业:基础数学,计算数学,概率论与数理统计,应用数学,运筹学与控制论

$1$.($15$分)设$m,n$为自然数,证明$(x^m-1,x^n-1)=x^{(m,n)}-1$.

证明:$(1)$ 设$d=(m,n)$,因为$d\mid m$,则$m=d\cdot s$,其中$s\in \mathbb{N}$.所以

$$x^m-1=(x^d)^s-1=(x^d-1)\left[ (x^d)^{s-1}+(x^d)^{s-2}+\cdots +(x^d)+1\right] .$$

可推出:$x^{(m,n)}-1\mid x^m-1$,同理可得$x^{(m,n)}-1\mid x^n-1$.

$(2)$ 设$d(x)=(x^m-1,x^n-1)$,对于$d=(m,n)$,则存在$a,b\in \mathbb{Z}$,使得$a\cdot m+b\cdot n=(m,n)$,即$a\cdot m=(m,n)-b\cdot n$.左乘$x^{-b\cdot n}$至$x^{(m,n)}-1$,则

$$x^{-b\cdot n}(x^{(m,n)}-1)=x^{a\cdot m}-x^{-b\cdot n}=(x^{a\cdot m}-1)-(x^{-b\cdot n}-1).$$

由$(1)$的推理可知,$x^m-1\mid x^{a\cdot m}-1,x^n-1\mid x^{-b\cdot n}-1$.又因为$(x^m-1,x^n-1)\mid x^m-1$且$(x^m-1,x^n-1)\mid x^n-1$,故有$d(x)\mid x^{a\cdot m}-1$,$d(x)\mid x^{-b\cdot n}-1$.

所以$d(x)\mid x^{-b\cdot n}(x^{(m,n)}-1)$,又$d(x)\nmid x^{-b\cdot n}$,

可得出

$$(x^m-1,x^n-1)\mid x^{(m,n)}-1.$$

综上所述,有

$$(x^m-1,x^n-1)=x^{(m,n)}-1$$

$2$.($15$分)当$a,b$为何值时,下列线性方程组无解?有唯一解?有无穷多解?当方程组有解时,写出其全部解.

$$\begin{cases} x+y-z=0, \\ 2x+(a+3)y-3z=3, \-2x+(a-1)y+bz=-1. \end{cases}$$

解:

$$\begin{align}
(A,b) & =\begin{pmatrix} 1 & 1 & -1 & 0 \\ 2 & a+3 & -3 & 3 \\ -2 & a-1 & b & -1 \end{pmatrix} \to \begin{pmatrix} 1 & 1 & -1 & 0 \\ 0 & a+1 & -1 & 3 \\ -2 & a-1 & b & -1 \end{pmatrix} \to \begin{pmatrix} 1 & 1 & -1 & 0 \\ 0 & a+1 & -1 & 3 \\ 0 & a+1 & b-2 & -1 \end{pmatrix} \\
& \to \begin{pmatrix} 1 & 1 & -1 & 0 \\ 0 & a+1 & -1 & 3 \\ 0 & 0 & b-1 & -4 \end{pmatrix}\to \begin{pmatrix} 1 & -a & 0 & -3 \\ 0 & a+1 & -1 & 3 \\ 0 & (a+1)(b-1) & 0 & 3b-7 \end{pmatrix}
\end{align}$$

$(1)$ 当$(a+1)(b-1)=0,3b-7\neq 0$,即当$a=-1,b\neq \dfrac73$或者当$b=1$时,方程组无解;

$(2)$ 当$(a+1)(b-1)\neq 0$,即当$a\neq -1$且$b\neq 1$时,方程组有唯一解.此时唯一解为:

$$\begin{cases} x=\dfrac{-4a-3b+3}{(a+1)(b-1)}, \\ y=\dfrac{3b-7}{(a+1)(b-1)}, \\ z=\dfrac{-4}{b-1}. \end{cases}$$

$(3)$ 当$(a+1)(b-1)=0$且$3b-7= 0$,即当$a=-1$且$b=\dfrac73$时,方程组有无穷多解.此时解为

$$\begin{cases} x=-3-y \\ z=3 \end{cases},y\in \mathbb{R}.$$

$3$.($20$分)设$V$是$n$维线性空间($n \geq 3$),$X$和$Y$为$V$的两个空间,并且维$(X)=n-1$,维$(Y)=n-2$.

$(1)$证明:维$(X\cap Y)=n-2$或$n-3$.

$(2)$证明:维$(X\cap Y)=n-2$当且仅当$Y$是$X$的子空间.

$(3)$举例说明:存在满足题设条件的线性空间$V$及其子空间$X$和$Y$使得维$(X\cap Y)=n-2$.

证明:$(1)$根据题意,由式子得

$$\text{dim}(X\cap Y)=\text{dim}(X)+\text{dim}(Y)-\text{dim}(X+Y) \geq (n-1)+(n-2)-n=n-3;$$

$$\text{dim}(X\cap Y)\leq \min \lbrace \text{dim} (X),\text{dim} (Y) \rbrace =n-2;$$

即可得出:$\text{dim}(X\cap Y) =n-2$或$n-3$.

$(2)$如果$\text{dim} (X\cap Y)=n-2$,又因为$X\cap Y\subset Y$,且$\text{dim}(Y)=n-2$,

可得出

$$X\cap Y= Y$$

即有$Y$是$X$的子空间:$Y \subset X$.

反过来,如果$Y$是$X$的子空间,即是:$Y \subset X$,

则有

$$X\cap Y= Y$$

于是

$$\text{dim} (X\cap Y) =\text{dim} (Y) =n-2.$$

因此,维$(X\cap Y)=n-2$当且仅当$Y$是$X$的子空间.

$(3)$令$V=R^3=\text{span} \lbrace e_1 ,e_2 ,e_3 \rbrace $,$X=\text{span} \lbrace e_1 ,e_2 \rbrace $,$Y=\text{span} \lbrace e_1 \rbrace $,则有

$$\text{dim} (X\cap Y)=1=3-2.$$

$4$.($15$分)设$A$是$n$阶实对称矩阵,若$A$的前$n-1$个顺序主子式均大于零,而$\mid A \mid =0$.证明:$n$元二次型$f(x_1 ,x_2 ,\cdots ,x_n )=X’AX$是半正定的,其中$X=(x_1 ,x_2 ,\cdots ,x_n )’$.

证明:由题设,令$A=\begin{pmatrix} Q & b \\ b’ & c \end{pmatrix}$.

因为$A$的前$n-1$个顺序主子式均大于零,因为由正定二次型的等价条件,知$Q$为一个正定阵,且存在实可逆矩阵$B$,使$Q=B’B$.

矩阵$\begin{pmatrix} E_{n-1} & 0 \\ -b’Q^{-1} & 1 \end{pmatrix}$左乘矩阵$A=\begin{pmatrix} Q & b \\ b’ & c \end{pmatrix}$,则得

$$\begin{pmatrix} E_{n-1} & 0 \\ -b’Q^{-1} & 1 \end{pmatrix}\begin{pmatrix} Q & b \\ b’ & c \end{pmatrix}=\begin{pmatrix} Q & b \\ 0 & c-b’Q^{-1}b \end{pmatrix}$$

由于$\mid A \mid =0$,得出$c=b’Q^{-1}b$.

由于$X=(x_1 ,x_2 ,\cdots ,x_n )’$,令$Z=X’=(x_1 ,x_2 ,\cdots ,x_{n-1} ,x_n )=(z,x_n)$而$Z\in R^n$,$z=(x_1 ,x_2 ,\cdots ,x_{n-1})$.

于是

$$\begin{align}
ZAZ’ & =(z,x_n )\begin{pmatrix} Q & b \\ b’ & c \end{pmatrix}\begin{pmatrix} z’ \\ x_n \end{pmatrix} \\
& =zQz’+x_n zb +x_n b’z’+cx_n^2 \\
& =zQz’+2x_n b’z’+b’Q^{-1}bx_n^2 (\because zb=b’z’,c=b’Q^{-1}b)\\
& =zB’Bz’+2x_n b’z’+b’B^{-1}{B’}^{-1}bx_n^2 (\because Q=B’B,Q^{-1}=B^{-1}{B’}^{-1})\\
& =y\cdot y’+2x_n b’B^{-1}Bz’+b’B^{-1}{B’}^{-1}bx_n^2 (\because y’=Bz’,x_n b’z’=x_n b’B^{-1}Bz’)\\
& =y\cdot y’+2x_n p\cdot y’+p\cdot p’ x_n^2 (\because p=b’B^{-1} ,p’={B’}^{-1}b)\\
& ={\mid y’ \mid }^2 +2x_n p\cdot y’+{\mid p \mid }^2\cdot x_n^2 (\because {\mid y’ \mid }^2=y\cdot y’,{\mid p \mid }^2=p\cdot p’)\\
& ={\mid x_n \cdot p+y’\mid }^2 \geq 0
\end{align}$$

依半正定二次型等价条件,矩阵$A$为半正定的.

$5$.($15$分)设$\mathcal{A}$是实数域$R$上的$n$维线性空间$V$上的线性变换,${\mathcal{A}}^2=\mathcal{E}$(恒等变换).令$V^{+}=\lbrace x\in V\mid \mathcal{A} x=x\rbrace $,$V^{-}=\lbrace x\in V\mid \mathcal{A} x=-x\rbrace $.

证明:$V=V^{+}\oplus V^{-}$.

证明:对于任意的$x\in V$来说,有$x=\dfrac{x+x}{2}=\dfrac{x+\mathcal{A}x}{2} +\dfrac{x-\mathcal{A}x}{2}$.

对于$x+\mathcal{A}x$来说,有

$$\mathcal{A}(x+\mathcal{A}x)=\mathcal{A}x+{\mathcal{A}}^2x=\mathcal{A}x+x=x+\mathcal{A}x$$

因此,$x+\mathcal{A}x\in V^{+}$,可知$\dfrac{x+\mathcal{A}x}{2}\in V^{+}$.

对于$x-\mathcal{A}x$来说,有

$$\mathcal{A}(x-\mathcal{A}x)=\mathcal{A}x-{\mathcal{A}}^2x=\mathcal{A}x-x=-(x-\mathcal{A}x)$$

因此,$x+\mathcal{A}x\in V^{-}$,可知$\dfrac{x+\mathcal{A}x}{2}\in V^{-}$.

由此,对于任意的$x\in V$来说,有

$$x=\dfrac{x+\mathcal{A}x}{2} +\dfrac{x-\mathcal{A}x}{2}\in V^{+} + V^{-}.$$

另外,对于任意的$x\in V^{+} \cap V^{-}$来说,有$\mathcal{A}x =x $,且$-\mathcal{A}x =x $,故

$$2x =\mathcal{A}x -\mathcal{A}x=0$$

推得

$$x=0.$$

因此,

$$V^{+} \cap V^{-}=\lbrace 0\rbrace .$$

综合上述所证,$V=V^{+}\oplus V^{-}$.

$6$.($15$分)设$A=(a_1 ,a_2 ,\cdots ,a_n )$为非零实$1\times n$矩阵,求:

$(1)$ 秩$(A’A)$;

$(2)$ $(A’A)$的特征值和特征向量.

解:$(1)$ 设$A’,A$分别为$n\times 1$与$1\times n$矩阵,则有

$$rank(A’A) \leq \min\lbrace rank(A’),rank(A),n,1\rbrace .$$

$$rank(A’A) \leq 1$$

其次,因为$A=(a_1 ,a_2 ,\cdots ,a_n )$为非零实$1\times n$矩阵,可设$a_i \neq 0$,那么$a_i \cdot a_i \neq 0$,故

$$rank(A’A) \geq 1$$

由上得出$rank(A’A) = 1$.

$(2)$首先,由于

$$(A’A)\cdot A’=A’\cdot (A\cdot A’)=A’\sum_{i=1}^n a_i^2$$

故由定义可知

$A’$是$A’A$的属于特征值$\displaystyle \sum_{i=1}^n a_i^2$的特征向量.

另一方面,再求$(0E-A’A)x=0$,即

$$-A’Ax=0$$

的基础解系.

由于$rank(A’A) = 1$,故$rank(-A’A) =rank(A’A)= 1$.

可一般性地设$a_1 \neq 0$,有

$$\begin{align}
-A’A & =-\begin{pmatrix} a_1 \\ a_2 \\ \cdots\\ a_n \end{pmatrix}(a_1 ,a_2 ,\cdots ,a_n ) \\
& = \begin{pmatrix} -a_1 a_1 & -a_1 a_2 & \cdots & -a_1 a_n \\ -a_2 a_1 & -a_2 a_2 & \cdots & -a_2 a_n \\ \vdots & \vdots & \ddots & \vdots \\ -a_n a_1 & -a_n a_2 & \cdots & -a_n a_n \end{pmatrix}\to \cdots \\
& \to \begin{pmatrix} -a_1 a_1 & -a_1 a_2 & \cdots & -a_1 a_n \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} \\
& \to \begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} \\
\end{align}$$

由上可知,方程组$-A’Ax=0$同解于$a_1 x_1 +a_2 x_2 +\cdots +a_n x_n =0(a_1 \neq 0)$,因此方程组$-A’Ax=0$的基础解系为

$$\alpha _1 =(-a_2 ,a_1 ,0,\cdots ,0)’,$$

$$\alpha _2 =(-a_3 ,0,a_1 ,\cdots ,0)’,$$

$$\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots$$

$$\alpha _{n-1} =(-a_n ,0,0,\cdots ,a_1 )’.$$

于是$A’A$属于特征值$0$的全部特征向量为

$$k_1 \alpha _1 +k_2 \alpha _2 +\cdots + k_{n-1} \alpha _{n-1},$$

其中$k_1 ,k_2 ,\cdots ,k_{n-1}$是不全为零的任意常数.

$7$.($15$分)设$\alpha$为欧氏空间$V$的非零向量,对$\xi \in V$定义$\mathcal{A} \xi =\xi-\dfrac{2(\xi ,\alpha )}{(\alpha ,\alpha )}\alpha $.

$1)$ 证明:$\mathcal{A}$为$V$的正交变换.

$2)$ 记$W=L(\alpha )^{\perp}$,则$W$是$n-1$维子空间,并且

$$\mathcal{A} \xi =\begin{cases} \xi , & \xi \in W, \\ -\xi , & \xi =\alpha .\end{cases}$$

$3)$ 设$V$的维数是$4$,令$\epsilon _1 ,\epsilon _2 ,\epsilon _3 ,\epsilon _4$为$V$的标准正交基,并设$\alpha =-\dfrac{1}{2} \epsilon _1 -\dfrac{1}{2} \epsilon _2 -\dfrac{1}{2} \epsilon _3 +\dfrac{1}{2} \epsilon _4$,求$\mathcal{A}$在$\epsilon _1 ,\epsilon _2 ,\epsilon _3 ,\epsilon _4$下的矩阵.

证明:$1)$根据正交变换的定义,对于任意的$\beta ,\gamma \in V$,

$$\begin{align}
(\mathcal{A} \beta ,\mathcal{A} \gamma ) & =\left( \beta -\dfrac{2(\beta ,\alpha )}{(\alpha ,\alpha )}\alpha ,\gamma -\dfrac{2(\gamma ,\alpha )}{(\alpha ,\alpha )}\alpha \right) \\
& =(\beta ,\gamma )-\dfrac{2(\gamma ,\alpha )}{(\alpha ,\alpha )}(\beta ,\alpha )-\dfrac{2(\beta ,\alpha )}{(\alpha ,\alpha )}(\alpha ,\gamma ) +\dfrac{4(\beta ,\alpha )\cdot (\gamma ,\alpha )}{(\alpha ,\alpha )\cdot (\alpha ,\alpha )}(\alpha ,\alpha )\\
& =(\beta ,\gamma )
\end{align}$$

因此,$\mathcal{A}$为$V$的正交变换.

$2)$ 明显的,对于$W=L(\alpha )^{\perp}$,有

$$dim(W)=dim(V)-dim \\ span \lbrace \alpha \rbrace =n-1.$$

对于$\xi \in V$来说,如果$\xi =\alpha $,那么

$$\mathcal{A} \alpha =\alpha-\dfrac{2(\alpha ,\alpha )}{(\alpha ,\alpha )}\alpha =\alpha -2\alpha=-\alpha $$

如果$\xi \in W$,那么对于$\mathcal{A} \xi$来说,有

$$(\mathcal{A} \xi ,\alpha )=\left( \xi-\dfrac{2(\xi ,\alpha )}{(\alpha ,\alpha )}\alpha ,\alpha \right) =0 $$

可知$\mathcal{A} \xi \in W$.

这时对于任意的$\eta \in W$,有

$$(\mathcal{A} \xi ,\eta )=\left( \xi-\dfrac{2(\xi ,\alpha )}{(\alpha ,\alpha )}\alpha ,\eta \right) =(\xi ,\eta ).$$

可知

$$\mathcal{A} \xi =\xi .$$

综述可知,

$$\mathcal{A} \xi =\begin{cases} \xi , & \xi \in W, \\ -\xi , & \xi =\alpha .\end{cases}$$

$3)$ 对$\epsilon _1 ,\epsilon _2 ,\epsilon _3 ,\epsilon _4$来说,利用式子$\mathcal{A} \xi =\xi-\dfrac{2(\xi ,\alpha )}{(\alpha ,\alpha )}\alpha $来求$\mathcal{A} \epsilon _1 ,\mathcal{A} \epsilon _2 ,\mathcal{A} \epsilon _3 ,\mathcal{A} \epsilon _4$.

$$\begin{align}
\mathcal{A} \epsilon _1 & =\epsilon _1 -\dfrac{2(\epsilon _1 ,\alpha )}{(\alpha ,\alpha )}\alpha \\
& =\epsilon _1 -2(\epsilon _1 ,\alpha )\alpha \\
& =\epsilon _1 -2(\epsilon _1 ,-\dfrac{1}{2} \epsilon _1 -\dfrac{1}{2} \epsilon _2 -\dfrac{1}{2} \epsilon _3 +\dfrac{1}{2} \epsilon _4 )\alpha \\
& =\epsilon _1 -2(\epsilon _1 ,-\dfrac{1}{2} \epsilon _1 )\alpha \\
& =\epsilon _1 -2\cdot (-\dfrac{1}{2})(\epsilon _1 , \epsilon _1 )\alpha \\
& =\epsilon _1 +\alpha \\
& =\dfrac{1}{2} \epsilon _1 -\dfrac{1}{2} \epsilon _2 -\dfrac{1}{2} \epsilon _3 +\dfrac{1}{2} \epsilon _4
\end{align}$$

同理,有

$$\begin{align}
\mathcal{A} \epsilon _2 & =\epsilon _2 -\dfrac{2(\epsilon _2 ,\alpha )}{(\alpha ,\alpha )}\alpha \\
& =\epsilon _2 -2(\epsilon _2 ,\alpha )\alpha \\
& =\epsilon _2 -2(\epsilon _2 ,-\dfrac{1}{2} \epsilon _1 -\dfrac{1}{2} \epsilon _2 -\dfrac{1}{2} \epsilon _3 +\dfrac{1}{2} \epsilon _4 )\alpha \\
& =\epsilon _2 -2(\epsilon _2 ,-\dfrac{1}{2} \epsilon _2 )\alpha \\
& =\epsilon _2 -2\cdot (-\dfrac{1}{2})(\epsilon _2 , \epsilon _2 )\alpha \\
& =\epsilon _2 +\alpha \\
& =-\dfrac{1}{2} \epsilon _1 +\dfrac{1}{2} \epsilon _2 -\dfrac{1}{2} \epsilon _3 +\dfrac{1}{2} \epsilon _4
\end{align}$$

$$\begin{align}
\mathcal{A} \epsilon _3 & =\epsilon _3 -\dfrac{2(\epsilon _3 ,\alpha )}{(\alpha ,\alpha )}\alpha \\
& =\epsilon _3 -2(\epsilon _3 ,\alpha )\alpha \\
& =\epsilon _3 -2(\epsilon _3 ,-\dfrac{1}{2} \epsilon _1 -\dfrac{1}{2} \epsilon _2 -\dfrac{1}{2} \epsilon _3 +\dfrac{1}{2} \epsilon _4 )\alpha \\
& =\epsilon _3 -2(\epsilon _3 ,-\dfrac{1}{2} \epsilon _3 )\alpha \\
& =\epsilon _3 -2\cdot (-\dfrac{1}{2})(\epsilon _3 , \epsilon _3 )\alpha \\
& =\epsilon _3 +\alpha \\
& =-\dfrac{1}{2} \epsilon _1 -\dfrac{1}{2} \epsilon _2 +\dfrac{1}{2} \epsilon _3 +\dfrac{1}{2} \epsilon _4
\end{align}$$

$$\begin{align}
\mathcal{A} \epsilon _4 & =\epsilon _4 -\dfrac{2(\epsilon _4 ,\alpha )}{(\alpha ,\alpha )}\alpha \\
& =\epsilon _4 -2(\epsilon _4 ,\alpha )\alpha \\
& =\epsilon _4 -2(\epsilon _4 ,-\dfrac{1}{2} \epsilon _1 -\dfrac{1}{2} \epsilon _2 -\dfrac{1}{2} \epsilon _3 +\dfrac{1}{2} \epsilon _4 )\alpha \\
& =\epsilon _4 -2(\epsilon _4 ,\dfrac{1}{2} \epsilon _4 )\alpha \\
& =\epsilon _4 -2\cdot \dfrac{1}{2} (\epsilon _4 , \epsilon _4 )\alpha \\
& =\epsilon _4 -\alpha \\
& =\dfrac{1}{2} \epsilon _1 +\dfrac{1}{2} \epsilon _2 +\dfrac{1}{2} \epsilon _3 +\dfrac{1}{2} \epsilon _4
\end{align}$$

综上所述,可得

$$\mathcal{A} (\epsilon _1 ,\epsilon _2 ,\epsilon _3 ,\epsilon _4)=(\epsilon _1 ,\epsilon _2 ,\epsilon _3 ,\epsilon _4)\begin{pmatrix} \dfrac{1}{2} & -\dfrac{1}{2} & -\dfrac{1}{2} & \dfrac{1}{2} \\ -\dfrac{1}{2} & \dfrac{1}{2} & -\dfrac{1}{2} & \dfrac{1}{2} \\ -\dfrac{1}{2} & -\dfrac{1}{2} & \dfrac{1}{2} & \dfrac{1}{2} \\ \dfrac{1}{2} & \dfrac{1}{2} & \dfrac{1}{2} & \dfrac{1}{2} \end{pmatrix}$$

故$\mathcal{A}$在$\epsilon _1 ,\epsilon _2 ,\epsilon _3 ,\epsilon _4$下的矩阵为:

$$\begin{pmatrix} \dfrac{1}{2} & -\dfrac{1}{2} & -\dfrac{1}{2} & \dfrac{1}{2} \\ -\dfrac{1}{2} & \dfrac{1}{2} & -\dfrac{1}{2} & \dfrac{1}{2} \\ -\dfrac{1}{2} & -\dfrac{1}{2} & \dfrac{1}{2} & \dfrac{1}{2} \\ \dfrac{1}{2} & \dfrac{1}{2} & \dfrac{1}{2} & \dfrac{1}{2} \end{pmatrix}.$$

$8$.($20$分)在欧氏空间中有三组向量:$\alpha _1 ,\alpha _2 ,\cdots ,\alpha _s$;$\beta _1 ,\beta _2 ,\cdots ,\beta _s $和$\gamma _1 ,\gamma _2 ,\cdots ,\gamma _s$.如果$\alpha _1 ,\alpha _2 ,\cdots ,\alpha _s$是线性无关的,$\beta _1 ,\beta _2 ,\cdots ,\beta _s $和$\gamma _1 ,\gamma _2 ,\cdots ,\gamma _s$都是两两正交的单位向量,并且对一切$i,1\leq i \leq s$,均有

$$L(\alpha _1 ,\alpha _2 ,\cdots ,\alpha _i )=L(\beta _1 ,\beta _2 ,\cdots ,\beta _i )=L(\gamma _1 ,\gamma _2 ,\cdots ,\gamma _i ),$$

证明:对每个$i$,有$\beta _i =\pm \gamma _i$.

证明:下面用数学归纳法进行证明.

当$i=1$时,由题意有$L(\beta _1 )=L(\gamma _1 )$,又因为$\beta _1 ,\beta _2 ,\cdots ,\beta _s $和$\gamma _1 ,\gamma _2 ,\cdots ,\gamma _s$都是两两正交的单位向量,于是有$\mid \beta _1 \mid =1=\mid \gamma _1 \mid$.因此有

$$\beta _1 =\pm \gamma _1 $$

成立.

假设已有

$$\beta _j =\pm \gamma _j ,\quad 1\leq j\leq i-1 ,2\leq i\leq n$$

成立.下证$\beta _i =\pm \gamma _i$也成立.

对向量$\beta _i$来说,存在一组不同时为零的数$b_1 ,b_2 ,\cdots ,b_i$和一组两两正交的单位向量$\gamma _1 ,\gamma _2 ,\cdots ,\gamma _i $,使得

$$\beta _i =b_1 \cdot \gamma _1 + b_2 \cdot \gamma _2 +\cdots +b_i \cdot \gamma _i$$

成立.

由于$\beta _1 ,\beta _2 ,\cdots ,\beta _s $为两两正交的单位向量,故对于任意的$\pm \beta _j ,1\leq j\leq i-1$和$\beta _i$来说,有

$$\begin{align}
0 & =(\beta _i ,\pm \beta _j ) \\
& =(\beta _i ,\gamma _j ) \\
& =(b_1 \cdot \gamma _1 + b_2 \cdot \gamma _2 +\cdots +b_i \cdot \gamma _i ,\gamma _j ) \\
& =(b_j \cdot \gamma _j ,\gamma _j ) \\
& =b_j \cdot (\gamma _j ,\gamma _j ) \\
& =b_j \\
\end{align}$$

因此,

$$\beta _i =b_i \cdot \gamma _i.$$

又因为$\beta _1 ,\beta _2 ,\cdots ,\beta _s $和$\gamma _1 ,\gamma _2 ,\cdots ,\gamma _s$都是两两正交的单位向量,于是有$\mid \beta _i \mid =1=\mid \gamma _i \mid ,1\leq i\leq s$.

于是,$b_i =\pm 1$,即有

$$\beta _i =\pm \gamma _i$$

成立.

综上所述,对每个$i$,有$\beta _i =\pm \gamma _i$.

$9$.($20$分)设$A,B$都是实对称矩阵,证明:当且仅当$AB=BA$时,有正交矩阵$Q$,使$Q^{-1}AQ$与$Q^{-1}BQ$同时为对角矩阵.

证明:下面分两部分来证明.

第一部分.假设存在一个正交矩阵$Q$,使得$Q^{-1}AQ$与$Q^{-1}BQ$同时为对角矩阵,那么即有

$$Q^{-1}AQ=\begin{pmatrix} \lambda _1 & & \\ & \ddots & \\ & & \lambda _n \end{pmatrix},\quad Q^{-1}BQ=\begin{pmatrix} \mu _1 & & \\ & \ddots & \\ & & \mu _n \end{pmatrix}$$

成立.

这时,式子

$$\begin{align}
Q^{-1}ABQ & =Q^{-1}AQ\cdot Q^{-1}BQ \\
& =\begin{pmatrix} \lambda _1 & & \\ & \ddots & \\ & & \lambda _n \end{pmatrix}\cdot \begin{pmatrix} \mu _1 & & \\ & \ddots & \\ & & \mu _n \end{pmatrix} \\
& =\begin{pmatrix} \lambda _1 \mu _1 & & \\ & \ddots & \\ & & \lambda _n \mu _n \end{pmatrix} \\
& =\begin{pmatrix} \mu _1 \lambda _1 & & \\ & \ddots & \\ & & \mu _n \lambda _n \end{pmatrix} \\
& =\begin{pmatrix} \mu _1 & & \\ & \ddots & \\ & & \mu _n \end{pmatrix}\cdot \begin{pmatrix} \lambda _1 & & \\ & \ddots & \\ & & \lambda _n \end{pmatrix} \\
& =Q^{-1}BQ\cdot Q^{-1}AQ \\
& =Q^{-1}BAQ \\
\end{align}$$

成立,从而

$$AB=BA$$

成立.

第二部分.由于矩阵$A$是实对称矩阵,根据基本定理,从而存在一个正交矩阵$P$,使

$$P’AP=P^{-1}AP=\begin{pmatrix} \lambda _1 E_{\lambda _1} & & \\ & \ddots & \\ & & \lambda _s E_{\lambda _s}\end{pmatrix} ,$$

其中$\lambda _1 ,\lambda _2 ,\cdots ,\lambda _s$互不相同.

将$P^{-1}BP$写成与$P^{-1}AP$类似的分块矩阵:

$$P^{-1}BP=\begin{pmatrix} \tilde{B} _{\lambda _1 \lambda _1 } & \cdots & \tilde{B} _{\lambda _1 \lambda _s } \\ \vdots & \ddots & \vdots \\ \tilde{B} _{\lambda _s \lambda _1 } & \cdots & \tilde{B} _{\lambda _s \lambda _s }\end{pmatrix} ,$$

又由$AB=BA$,所以

$$(P^{-1}AP)(P^{-1}BP)=(P^{-1}BP)(P^{-1}AP)$$

那么有

$$\begin{pmatrix} \lambda _1 E_{\lambda _1} & & \\ & \ddots & \\ & & \lambda _s E_{\lambda _s}\end{pmatrix}\begin{pmatrix} \tilde{B} _{\lambda _1 \lambda _1 } & \cdots & \tilde{B} _{\lambda _1 \lambda _s } \\ \vdots & \ddots & \vdots \\ \tilde{B} _{\lambda _s \lambda _1 } & \cdots & \tilde{B} _{\lambda _s \lambda _s }\end{pmatrix} =\begin{pmatrix} \tilde{B} _{\lambda _1 \lambda _1 } & \cdots & \tilde{B} _{\lambda _1 \lambda _s } \\ \vdots & \ddots & \vdots \\ \tilde{B} _{\lambda _s \lambda _1 } & \cdots & \tilde{B} _{\lambda _s \lambda _s }\end{pmatrix}\begin{pmatrix} \lambda _1 E_{\lambda _1} & & \\ & \ddots & \\ & & \lambda _s E_{\lambda _s}\end{pmatrix}.$$

可知有$\lambda _i E_{\lambda _i}\cdot \tilde{B} _{\lambda _i \lambda _j } =\tilde{B} _{\lambda _i \lambda _j } \cdot \lambda _j E_{\lambda _j}$成立,

得出

$$\tilde{B} _{\lambda _i \lambda _j }=0,i\neq j,$$

于是

$$P^{-1}BP=\begin{pmatrix} \tilde{B} _{\lambda _1 \lambda _1 } & & \\ & \ddots & \\ & & \tilde{B} _{\lambda _s \lambda _s }\end{pmatrix} .$$

因为$\tilde{B} _{\lambda _i \lambda _i }$为实对称矩阵,

同样存在正交矩阵$R_{\lambda _i }$,使得

$$R_{\lambda _i }^{-1} \tilde{B} _{\lambda _i \lambda _i }R_{\lambda _i }=\begin{pmatrix} b_{i1} & & \\ & \ddots & \\ & & b_{ik_i }\end{pmatrix}$$

成立.

$$ R=\begin{pmatrix} R_{\lambda _1 } & & \\ & \ddots & \\ & & R_{\lambda _s }\end{pmatrix},Q=PR,$$

则$Q$为正交矩阵,且

$$\begin{align}
Q^{-1}AQ & =R^{-1}P^{-1}APR \\
& =\begin{pmatrix} R_{\lambda _1 }^{-1} & & \\ & \ddots & \\ & & R_{\lambda _s }^{-1}\end{pmatrix}\cdot \begin{pmatrix} \lambda _1 E_{\lambda _1} & & \\ & \ddots & \\ & & \lambda _s E_{\lambda _s}\end{pmatrix}\cdot \begin{pmatrix} R_{\lambda _1 } & & \\ & \ddots & \\ & & R_{\lambda _s }\end{pmatrix}\\
& =\begin{pmatrix} \lambda _1 E_{\lambda _1} & & \\ & \ddots & \\ & & \lambda _s E_{\lambda _s}\end{pmatrix}\\
\end{align},$$

$$\begin{align}
Q^{-1}BQ & =R^{-1}P^{-1}BPR \\
& =\begin{pmatrix} R_{\lambda _1 }^{-1} & & \\ & \ddots & \\ & & R_{\lambda _s }^{-1}\end{pmatrix}\cdot \begin{pmatrix} \tilde{B} _{\lambda _1 \lambda _1 } & & \\ & \ddots & \\ & & \tilde{B} _{\lambda _s \lambda _s }\end{pmatrix}\cdot \begin{pmatrix} R_{\lambda _1 } & & \\ & \ddots & \\ & & R_{\lambda _s }\end{pmatrix}\\
& =\begin{pmatrix} b_{11} & & & & & & \\ & \ddots & & & & & \\ & & b_{1k_1} & & & & \\ & & & \ddots & & & \\ & & & & b_{s1} & & \\ & & & & & \ddots & \\ & & & & & & b_{sk_s} \end{pmatrix}\\
\end{align}.$$

所以当$AB=BA$时,有有正交矩阵$Q$,使$Q^{-1}AQ$与$Q^{-1}BQ$同时为对角矩阵.

综合上述两部分,可知对于实对称矩阵$A,B$,当且仅当$AB=BA$时,有正交矩阵$Q$,使$Q^{-1}AQ$与$Q^{-1}BQ$同时为对角矩阵.

文章目錄