文章目錄

在线阅读

科目名称:高等代数

适用专业:基础数学,计算数学,概率论与数理统计,应用数学,运筹学与控制论

$1$.($15$分)设$f(x),g(x)$是$P[x]$中非零多项式,且$g(x)=s^m (x)g_1 (x)$,这里$m \geq 1$,$(s(x),g_1 (x))=1$,$s(x)\mid f(x)$.证明:不存在$f_1 (x),r(x)\in P[x]$,且$r(x)\neq 0$,$\partial (r(x)) < \partial (s(x))$使得

$$\dfrac{f(x)}{g(x)}=\dfrac{r(x)}{s^m(x)} +\dfrac{f_1 (x)}{s^{m-1} (x)g_1 (x)}.$$

证明:用反证法.如果存在$f_1 (x),r(x)\in P[x]$,且$r(x)\neq 0$,$\partial (r(x)) < \partial (s(x))$使得

$$\dfrac{f(x)}{g(x)}=\dfrac{r(x)}{s^m(x)} +\dfrac{f_1 (x)}{s^{m-1} (x)g_1 (x)}$$

成立.

因为$g(x)=s^m (x)g_1 (x)$,故

$$f(x)=\left( \dfrac{r(x)}{s^m(x)} +\dfrac{f_1 (x)}{s^{m-1} (x)g_1 (x)} \right) g(x) =r(x)g_1(x) +f_1 (x)s(x),$$

$$f(x)-f_1 (x)s(x)=r(x)g_1(x) .$$

因为$s(x)\mid f(x),s(x)\mid f_1 (x)s(x)$,故

$$s(x)\mid f(x)-f_1 (x)s(x)=r(x)g_1(x) .$$

由于$(s(x),g_1 (x))=1$,故存在$p(x),q(x)\in P[x]$,使得

$$p(x)s(x)+q(x)g_1 (x) =1.$$

等式两边同乘以$r(x)$,得

$$p(x)s(x)r(x)+q(x)[g_1 (x)r(x)] =r(x).$$

因为$s(x)\mid p(x)s(x)r(x)$和$s(x)\mid q(x)[g_1 (x)r(x)]$,故

$$s(x)\mid r(x).$$

但这与原假设$\partial (r(x)) < \partial (s(x))$矛盾,故原假设不成立.

因此,不存在$f_1 (x),r(x)\in P[x]$,且$r(x)\neq 0$,$\partial (r(x)) < \partial (s(x))$使得

$$\dfrac{f(x)}{g(x)}=\dfrac{r(x)}{s^m(x)} +\dfrac{f_1 (x)}{s^{m-1} (x)g_1 (x)}.$$

$2$.($15$分)设$P[X]_n$表示数域$P$上所有次数$< n$的多项式及零多项式构成的线性空间,令多项式$f_i (x)=(x-a_1 )\cdots (x-a_{i-1} )(x-a_{i+1} )\cdots (x-a_n )$,其中$i=1,2,\cdots ,n$,且$a_1 ,a_2 ,\cdots ,a_n$是数域$P$中$n$个互不相同的数.

$(1)$证明:$f_1 (x),f_2 (x),\cdots ,f_n (x)$是$P[x]_n$的一组基;

$(2)$在$(1)$中,取$a_1 ,a_2 ,\cdots ,a_n$为全体$n$次单位根,求由基$1,x,\cdots ,x^{n-1}$到基$f_1 (x),f_2 (x),\cdots ,f_n (x)$的过渡矩阵$T$.

证明:$(1)$由多项式$f_i (x)=(x-a_1 )\cdots (x-a_{i-1} )(x-a_{i+1} )\cdots (x-a_n )$知,对任意的$i\neq j$,有$f_i (a_j )=0$,而$f_i (a_i )\neq 0$.

对于式子$\displaystyle \sum_{i=1}^n c_i f_i (x)=0$来说,令$x=a_1 $,代入上式,则有

$$\displaystyle \sum_{i=1}^n c_i f_i (a_1 )=c_1 f_1 (a_1 )=0.$$

因为$f_1 (a_1 )\neq 0$,故得出

$$c_1 =0.$$

同理,有$c_i =0,i=2,\cdots ,n$.

综上可知,$c_i =0,i=1,\cdots ,n$.

于是,存在一组全为零的数$c_1 ,c_2 ,\cdots ,c_n$,使得等式

$$\displaystyle \sum_{i=1}^n c_i f_i (x)=0$$

成立.

即$f_1 (x),f_2 (x),\cdots ,f_n (x)$线性无关,同时也是$P[x]_n$的一组基.

$(2)$记$\omega =e^{i\frac{2\pi }{n}}$,则依题意有$a_i =\omega ^i ,1\leq i\leq n$.

于是,

$$(x^n -1)=(x-\omega )(x-\omega ^2)\cdots (x-\omega ^n)=(x-\omega ^i)f_i (x).$$

假设由基$1,x,\cdots ,x^{n-1}$到基$f_1 (x),f_2 (x),\cdots ,f_n (x)$的过渡矩阵$T=\begin{pmatrix} t_{11} & \cdots & t_{1n} \\ \vdots & \ddots & \vdots \\ t_{n1} & \cdots & t_{nn} \end{pmatrix}$使得等式

$$(f_1 (x),f_2 (x),\cdots ,f_n (x))=(1,x,\cdots ,x^{n-1})\begin{pmatrix} t_{11} & \cdots & t_{1n} \\ \vdots & \ddots & \vdots \\ t_{n1} & \cdots & t_{nn} \end{pmatrix} $$

成立.

$$\begin{align}
x^n-1 & =(x-\omega ^i)f_i (x) \\
& =(x-\omega ^i)(1\cdot t_{1i} +xt_{2i} +\cdots +x^{n-1}t_{ni} ) \\
& =xt_{1i} +x^2t_{2i} +\cdots +x^nt_{ni} -\omega ^i t_{1i} -\omega ^i xt_{2i} -\cdots -\omega ^i x^{n-1}t_{ni} \\
& =x^nt_{ni} +(t_{n-1,i}-\omega ^i t_{ni})x^{n-1}+\cdots +(t_{1i} -\omega ^i t_{2i} )x -\omega ^i t_{1i}
\end{align}$$

对应系数可知,

$$t_{ni}=1,t_{n-1,i}-\omega ^i t_{ni} =0,\cdots ,t_{1i} -\omega ^i t_{2i} =0 ,-\omega ^i t_{1i} =-1,$$

把解出的$t_{ni}=1$代入式子

$$t_{n-1,i}-\omega ^i t_{ni} =0,$$

解出$t_{n-1,i}=\omega ^i$.把$t_{n-1,i}=\omega ^i$代入式子

$$t_{n-2,i}-\omega ^i t_{n-1,i} =0,$$

解出$t_{n-2,i}=\omega ^{2i}$.重复以上步骤,可依次解出$t_{n-3,i}=\omega ^{3i} ,\cdots ,t_{3i}=\omega ^{(n-3)i} ,t_{2i}=\omega ^{(n-2)i} ,t_{1i}=\omega ^{(n-1)i}$.

于是,求得过渡矩阵

$$T=\begin{pmatrix} \omega ^{(n-1)} & \cdots & \omega ^{(n-1)i} & \cdots & \omega ^{(n-1)n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \omega ^{j} & \cdots & \omega ^{ji} & \cdots & \omega ^{jn} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \omega & \cdots & \omega ^i & \cdots & \omega ^n \\ 1 & \cdots & 1 & \cdots & 1 \end{pmatrix} .$$

$3$.($20$分)设$n$阶方阵$A$满足$A^2 =A$,且$A$的秩$r(A)=r$,

$(1)$证明:$tr(A)=r$,这里$A$的迹$tr(A)$定义为$A$的主对角线上的元素之和;

$(2)$求$\mid A+E\mid $的值.

证明:先证相似矩阵有相同的迹.

设$A=(a_{ij})_{n\times n} ,B=(b_{ij})_{n\times n} ,A\sim B$,则

$$tr(A) =a_{11} +a_{22} +\cdots +a_{nn} =\lambda _1 +\lambda _2 +\cdots +\lambda _n .$$

$$tr(B) =b_{11} +b_{22} +\cdots +b_{nn} =\mu _1 +\mu _2 +\cdots +\mu _n .$$

其中$\lambda _1 ,\cdots ,\lambda _n $为$A$的全部特征值,$\mu _1 ,\cdots ,\mu _n $为$B$的全部特征值,而相似矩阵有相同特征值,故$tr A=tr B$.

$(1)$由$A^2 =A$,即$A^2 -A=0$可知,$g(\lambda )=\lambda ^2 -\lambda $是$A$的零化多项式[凡使$g(A)=0$的$\lambda $的多项式$g(\lambda )$称为矩阵$A$的零化多项式(一般取系数为1)].因此,$A$的特征值只能是$1$或$0$,又$g(\lambda )=\lambda (\lambda -1)$无重根,那么$A$的最小多项式$d_n (\lambda )$无重根,于是矩阵$A$可对角化(即$A$相似于对角阵),即存在可逆阵$T$,使

$$T^{-1}AT=\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}.$$

于是

$$A\sim \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix},$$

所以

$$tr A =tr \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} =r=r(A).$$

$(2)$由$(1)$题已证的结论$T^{-1}AT=\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$,可知

$$T^{-1}(A+E)T=\begin{pmatrix} 2I_r & 0 \\ 0 & I_{n-r} \end{pmatrix},$$

那么

$$\mid A+E\mid =\mid T^{-1}(A+E)T\mid = \begin{vmatrix} 2I_r & 0 \\ 0 & I_{n-r} \end{vmatrix} =2^r .$$

$4$.($20$分)设$\varepsilon _1 ,\varepsilon _2 ,\varepsilon _3 $是欧氏空间$V$的一组标准正交基,设$\alpha _1 =\varepsilon _1 +\varepsilon _2 -\varepsilon _3 $,$\alpha _2 =\varepsilon _1 -\varepsilon _2 -\varepsilon _3 $,$W=L(\alpha _1 ,\alpha _2 )$,

$(1)$求$W$的一组标准正交基;

$(2)$求$W^{\perp }$的一组标准正交基;

$(3)$求$\alpha =\varepsilon _2 +2\varepsilon _3$在$W$中的内射影(即求$\beta \in W$,使$\alpha =\beta +\gamma $,$\gamma \in W^{\perp }$),并求$\alpha $到$W$的距离.

解:$(1)$由$\alpha _1 =\varepsilon _1 +\varepsilon _2 -\varepsilon _3 $,$\alpha _2 =\varepsilon _1 -\varepsilon _2 -\varepsilon _3 $可知,

$$\alpha _1 -\alpha _2 =2\varepsilon _2 ,\alpha _1 +\alpha _2 =2(\varepsilon _1 -\varepsilon _3 ).$$

由于$(\alpha _1 -\alpha _2 ,\alpha _1 +\alpha _2 )=(2\varepsilon _2 ,2(\varepsilon _1 -\varepsilon _3 )) =2\varepsilon _2 \cdot 2(\varepsilon _1 -\varepsilon _3 ) =0$,故$2\varepsilon _2 ,2(\varepsilon _1 -\varepsilon _3 )$为$W$中的一组基,但还不是单位的.下面对其单位化.

令$\beta _1 =\dfrac{2\varepsilon _2 }{2} =\varepsilon _2 $,则有

$$(\beta _1 ,\beta _1 )=(\varepsilon _2 ,\varepsilon _2 )=1.$$

令$\beta _2 =\dfrac{2(\varepsilon _1 -\varepsilon _3 )}{\sqrt{8}}=\dfrac{\varepsilon _1 -\varepsilon _3 }{\sqrt{2}}$,则有

$$(\beta _2 ,\beta _2 )=(\dfrac{\varepsilon _1 -\varepsilon _3 }{\sqrt{2}} ,\dfrac{\varepsilon _1 -\varepsilon _3 }{\sqrt{2}} )=1.$$

故$W$的一组标准正交基为$\varepsilon _2 ,\dfrac{\varepsilon _1 -\varepsilon _3 }{\sqrt{2}}$.

$(2)$由假设知$\varepsilon _1 ,\varepsilon _2 ,\varepsilon _3 $是欧氏空间$V$的一组标准正交基,并且$W=L(\varepsilon _2 ,\dfrac{\varepsilon _1 -\varepsilon _3 }{\sqrt{2}} )$,故知$W^{\perp }$是一维的.

另外,根据$\beta _2 =\dfrac{\varepsilon _1 -\varepsilon _3 }{\sqrt{2}}$,可令$\beta _3 =\dfrac{\varepsilon _1 +\varepsilon _3 }{\sqrt{2}}$,这时有$(\beta _2 ,\beta _3)=0$,当然$(\beta _1 ,\beta _3)=0$也成立.

同时,

$$(\beta _3 ,\beta _3 )=(\dfrac{\varepsilon _1 +\varepsilon _3 }{\sqrt{2}} ,\dfrac{\varepsilon _1 +\varepsilon _3 }{\sqrt{2}} )=1$$

故得,$W^{\perp }$的一组标准正交基为$\dfrac{\varepsilon _1 +\varepsilon _3 }{\sqrt{2}}$.

$(3)$对于$V$中任意给定的向量$\alpha$,取$W$中的向量$\beta =(\alpha ,\beta_1 )\beta _1 +(\alpha ,\beta_2 )\beta _2$,可以证明$\gamma =\alpha -\beta \in W^{\perp }$.事实上,对$W$的标准正交基中的每一个向量$\beta _1 $和$\beta _2 $,

$$(\alpha -\beta ,\beta _1 )=(\alpha ,\beta _1) -(\beta ,\beta _1 )=(\alpha ,\beta _1) -(\alpha ,\beta _1) =0,$$

$$(\alpha -\beta ,\beta _2 )=(\alpha ,\beta _2) -(\beta ,\beta _2 )=(\alpha ,\beta _2) -(\alpha ,\beta _2) =0.$$

因此,$\alpha =\beta +(\alpha -\beta )\in W+W^{\perp }$.

由$\alpha -\beta \in W^{\perp }$,可知存在$W$中唯一的向量$\beta $,使得$\alpha -\beta \perp W$.所以对于任意的向量$\delta \in W$来说,有

$$\begin{align}
\mid \alpha -\delta \mid ^2 & = \mid (\alpha -\beta )+(\beta -\delta )\mid ^2 \\
& = (\alpha -\beta )^2+2\mid \alpha -\beta \mid \mid \beta -\delta \mid +(\beta -\delta )^2 \\
& = (\alpha -\beta )^2+(\beta -\delta )^2\\
& \geq (\alpha -\beta )^2 ,
\end{align}$$

由$V$中向量$\alpha $到子空间$W$的距离$d(\alpha ,W)$定义为

$$d(\alpha ,W)=\underset{\delta \in W}{\inf }\mid \alpha -\delta \mid .$$

得出,$d(\alpha ,W)=\mid \alpha -\beta \mid $.

于是,$\alpha =\varepsilon _2 +2\varepsilon _3$在$W$中的内射影

$$\begin{align}
\beta & =(\alpha ,\beta_1 )\beta _1 +(\alpha ,\beta_2 )\beta _2 \\
& =(\varepsilon _2 +2\varepsilon _3 ,\varepsilon _2 )\varepsilon _2 +(\varepsilon _2 +2\varepsilon _3 ,\dfrac{\varepsilon _1 -\varepsilon _3 }{\sqrt{2}} )\dfrac{\varepsilon _1 -\varepsilon _3 }{\sqrt{2}} \\
& = \varepsilon _2 +(-\sqrt{2})\dfrac{\varepsilon _1 -\varepsilon _3 }{\sqrt{2}}\\
& =\varepsilon _2 -(\varepsilon _1 -\varepsilon _3 ) \\
& =-(\varepsilon _1 -\varepsilon _2 -\varepsilon _3 ) \\
& =-\alpha _2
\end{align}$$

$\alpha $到$W$的距离

$$\begin{align}
d(\alpha ,W) & =\mid \alpha -\beta \mid \\
& =\mid \varepsilon _2 +2\varepsilon _3 -(-(\varepsilon _1 -\varepsilon _2 -\varepsilon _3 ))\mid \\
& = \mid \varepsilon _1 +\varepsilon _3 \mid \\
& =\mid (1,0,0) +(0,0,1) \mid \\
& =\mid (1,0,1) \mid \\
& =\sqrt{1^2+1^2} \\
& =\sqrt{2}
\end{align}$$

$5$.($20$分)设$\mathcal{A}$是数域$P$上的$n$维线性空间$V$的线性变换,$f(x),g(x)\in P[x]$.证明

$(1)$ $f(\mathcal{A} )^{-1} (0)+g(\mathcal{A} )^{-1} (0)\subseteq (f(\mathcal{A} )g(\mathcal{A} ))^{-1} (0)$.

$(2)$ 当$f(x)$与$g(x)$互素时,有

$$f(\mathcal{A} )^{-1}(0) \oplus g(\mathcal{A} )^{-1} (0) =(f(\mathcal{A} )g(\mathcal{A} ))^{-1} (0).$$

证明:$(1)$对于任意的$\alpha \in f(\mathcal{A} )^{-1} (0)+g(\mathcal{A} )^{-1} (0)$,则

$$\alpha =\alpha _1 +\alpha _2 ,\alpha _1 \in f(\mathcal{A} )^{-1} (0),\alpha _2 \in g(\mathcal{A} )^{-1} (0).$$

所以$f(\mathcal{A} )(\alpha _1 )=0,g(\mathcal{A} )(\alpha _2 )=0$,且由$f(\mathcal{A} )g(\mathcal{A} )=g(\mathcal{A} )f(\mathcal{A} )$,知

$$f(\mathcal{A} )g(\mathcal{A} )(\alpha )=f(\mathcal{A} )g(\mathcal{A} )(\alpha _1 )+f(\mathcal{A} )g(\mathcal{A} )(\alpha _2 )=g(\mathcal{A} )f(\mathcal{A} )(\alpha _1 )+f(\mathcal{A} )g(\mathcal{A} )(\alpha _2 )=0,$$

此即$\alpha \in (f(\mathcal{A} )g(\mathcal{A} ))^{-1} (0)$,故

$$f(\mathcal{A} )^{-1} (0)+g(\mathcal{A} )^{-1} (0)\subseteq (f(\mathcal{A} )g(\mathcal{A} ))^{-1} (0)$$

成立.

$(2)$ 因为$f(x)$与$g(x)$互素,则有$(f(x),g(x))=1$成立,所以存在$u(x),v(x)\in P[x]$,使得式子

$$u(x)f(x)+v(x)g(x)=1$$

成立.

从而有

$$u(\mathcal{A} )f(\mathcal{A} )+v(\mathcal{A} )g(\mathcal{A} )=I$$

(其中$I$为恒等变换)成立.

$(a)$先证

$$f(\mathcal{A} )^{-1}(0)+g(\mathcal{A} )^{-1}(0)=(f(\mathcal{A} )g(\mathcal{A} ))^{-1}(0).$$

对于任意的$\beta \in (f(\mathcal{A} )g(\mathcal{A} ))^{-1}(0)$,有$f(\mathcal{A} )g(\mathcal{A} )(\beta )=0$,且由式子$u(\mathcal{A} )f(\mathcal{A} )+v(\mathcal{A} )g(\mathcal{A} )=I$可得

$$\beta =I(\beta )=u(\mathcal{A} )f(\mathcal{A} )(\beta )+v(\mathcal{A} )g(\mathcal{A} )(\beta )=\beta _2 +\beta _1 ,$$

其中$\beta _2 =u(\mathcal{A} )f(\mathcal{A} )(\beta ) ,\beta _1 =v(\mathcal{A} )g(\mathcal{A} )(\beta ) $,故

$$g(\mathcal{A} )(\beta _2 )=u(\mathcal{A} )f(\mathcal{A} )g(\mathcal{A} )(\beta )=0.$$

此即$\beta _2 \in g(\mathcal{A} )^{-1}(0)$.同理,有

$$f(\mathcal{A} )(\beta _1 )=v(\mathcal{A} )f(\mathcal{A} )g(\mathcal{A} )(\beta )=0.$$

此即$\beta _1 \in f(\mathcal{A} )^{-1}(0)$.

故$\beta \in f(\mathcal{A} )^{-1}(0) +g(\mathcal{A} )^{-1} (0)$,此即

$$(f(\mathcal{A} )g(\mathcal{A} ))^{-1} (0) \subseteq f(\mathcal{A} )^{-1} (0)+g(\mathcal{A} )^{-1} (0).$$

再由$(1)$题的结论$f(\mathcal{A} )^{-1} (0)+g(\mathcal{A} )^{-1} (0)\subseteq (f(\mathcal{A} )g(\mathcal{A} ))^{-1} (0)$,得证

$$f(\mathcal{A} )^{-1}(0)+g(\mathcal{A} )^{-1}(0)=(f(\mathcal{A} )g(\mathcal{A} ))^{-1}(0).$$

$(b)$再证

$$f(\mathcal{A} )^{-1}(0)\bigcap g(\mathcal{A} )^{-1}(0)=\lbrace 0\rbrace .$$

对于任意的$\delta \in f(\mathcal{A} )^{-1}(0)\bigcap g(\mathcal{A} )^{-1}(0)$,有$f(\mathcal{A} )(\delta )=0,g(\mathcal{A} )(\delta )=0$,于是由式子$u(\mathcal{A} )f(\mathcal{A} )+v(\mathcal{A} )g(\mathcal{A} )=I$有

$$\delta =I(\delta )=u(\mathcal{A} )f(\mathcal{A} )(\delta )+v(\mathcal{A} )g(\mathcal{A} )(\delta )=0,$$

即证

$$f(\mathcal{A} )^{-1}(0)\bigcap g(\mathcal{A} )^{-1}(0)=\lbrace 0\rbrace $$

成立.

综合$(a),(b)$的证明,由式子

$$f(\mathcal{A} )^{-1}(0)+g(\mathcal{A} )^{-1}(0)=(f(\mathcal{A} )g(\mathcal{A} ))^{-1}(0),$$

$$f(\mathcal{A} )^{-1}(0)\cap g(\mathcal{A} )^{-1}(0)=\lbrace 0\rbrace .$$

即证

$$f(\mathcal{A} )^{-1}(0) \oplus g(\mathcal{A} )^{-1} (0) =(f(\mathcal{A} )g(\mathcal{A} ))^{-1} (0)$$

成立.

$6$.($20$分)设$f(x_1 ,x_2 ,\cdots ,x_n )=X’AX$为$n$元实二次型.若矩阵$A$的顺序主子式$\Delta _k (k=1,2,\cdots ,n)$都不为零,证明$f(x_1 ,x_2 ,\cdots ,x_n )$可以经过非退化的线性替换化为下述标准型

$$\lambda _1 y_1^2 + \lambda _2 y_2^2 +\cdots +\lambda _n y_n^2 ,$$

这里$\lambda _i =\dfrac{\Delta _i}{\Delta _{i-1}}$,$i=1,2,\cdots ,n$,并且$\Delta _0 =1$.

证明:对$n$作数学归纳法.当$n=1$时,$f(x_1 )=x’_1 a_{11} x_1 =a_{11} x_1^2$,$\Delta _1 =\mid a_{11} \mid =a_{11}$.因此,存在非退化的线性替换$y_1 =x_1$,使得

$$f(x_1 )=a_{11} x_1^2 =\dfrac{a_{11} }{1} x_1^2 =\dfrac{\Delta _1 }{\Delta _0} y_1^2 $$

成立.故$n=1$时,结论成立.

假设当$n=m-1$时,结论成立.

于是对于任意的$m-1$阶二次型$f$的矩阵$A_1$来说,其中$A’_1 =A_1 $,若其顺序主子式$\Delta _i (i=1,2,\cdots ,m-1)$都不为零,则$f(x_1 ,x_2 ,\cdots ,x_{m-1} )=X’_1 A_1 X_1$可以经过非退化的线性替换$X_1 =PY_1$,其中

$$X_1 =\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_{m-1} \end{pmatrix} ,Y_1 =\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_{m-1} \end{pmatrix} ,$$

从而化为下述标准型

$$\lambda _1 y_1^2 + \lambda _2 y_2^2 +\cdots +\lambda _{m-1} y_{m-1}^2 .$$

这里$\lambda _i =\dfrac{\Delta _i}{\Delta _{i-1}}$,$i=1,2,\cdots ,m-1$,并且$\Delta _0 =1$.

也即是,对于任意的$m-1$阶二次型$f$的矩阵$A_1$来说,存在$m-1$阶矩阵$P$,使得$P’ A_1 P=\begin{pmatrix} \lambda _1 & & \\ & \ddots & \\ & & \lambda _{m-1} \end{pmatrix}$.

下面证明当$n=m$时,结论也成立.

设$m$阶二次型$f$的矩阵$A=\begin{pmatrix} A_1 & b \\ b’ & c \end{pmatrix}$,其中$A’=A$,$A_1$是$m-1$阶的,$b$是$(m-1)\times 1$,$b’$是$1\times (m-1)$,$c\in R$,若其顺序主子式$\Delta _i (i=1,2,\cdots ,m)$都不为零,则存在$m\times m$矩阵

$$\begin{pmatrix} E_{m-1} & -A_1^{-1} b \\ 0 & 1 \end{pmatrix}$$

使得

$$\begin{pmatrix} E’_{m-1} & 0 \\ -b’(A_1^{-1})’ & 1 \end{pmatrix} \begin{pmatrix} A_1 & b \\ b’ & c \end{pmatrix} \begin{pmatrix} E_{m-1} & -A_1^{-1}b \\ 0 & 1 \end{pmatrix} =\begin{pmatrix} A_1 & 0 \\ 0 & c-b’ A_1^{-1}b \end{pmatrix} .$$

令$m\times m$矩阵

$$Q=\begin{pmatrix} E_{m-1} & -A_1^{-1}b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} P & 0 \\ 0 & 1 \end{pmatrix} ,$$

则有

$$\begin{align}
Q’AQ & =\begin{pmatrix} P & 0 \\ 0 & 1 \end{pmatrix}’ \begin{pmatrix} E_{m-1} & -A_1^{-1}b \\ 0 & 1 \end{pmatrix}’ \begin{pmatrix} A_1 & b \\ b’ & c \end{pmatrix} \begin{pmatrix} E_{m-1} & -A_1^{-1}b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} P & 0 \\ 0 & 1 \end{pmatrix} \\
& =\begin{pmatrix} P’ & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} E_{m-1} & 0 \\ -b’(A_1^{-1})’ & 1 \end{pmatrix} \begin{pmatrix} A_1 & b \\ b’ & c \end{pmatrix} \begin{pmatrix} E_{m-1} & -A_1^{-1}b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} P & 0 \\ 0 & 1 \end{pmatrix} \\
& =\begin{pmatrix} P’ & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} A_1 & 0 \\ 0 & c-b’ A_1^{-1}b \end{pmatrix} \begin{pmatrix} P & 0 \\ 0 & 1 \end{pmatrix} \\
& =\begin{pmatrix} P’AP & 0 \\ 0 & c-b’A_1^{-1}b \end{pmatrix} \\
& =\begin{pmatrix} \lambda _1 & & & 0 \\ & \ddots & & \vdots \\ & & \lambda _{m-1} & 0 \\ 0 & \cdots & 0 & c-b’A_1^{-1}b \end{pmatrix}
\end{align}$$

由于$\Delta _m =\mid A\mid =\mid P’AP\mid =\begin{vmatrix} A_1 & 0 \\ 0 & c-b’ A_1^{-1}b \end{vmatrix} =\mid A_1 \mid \cdot (c-b’ A_1^{-1}b)$,且$\Delta _{m-1}=\mid A_1 \mid $,故

$$\lambda _m =\dfrac{\Delta _m }{\Delta _{m-1} }=\dfrac{\mid A_1 \mid \cdot (c-b’ A_1^{-1}b) }{\mid A_1 \mid }=c-b’A_1^{-1}b .$$

因此,

$$Q’AQ=\begin{pmatrix} \lambda _1 & & \\ & \ddots & \\ & & \lambda _m \end{pmatrix} .$$

于是,当$n=m$时,结论也成立.

综上所述,$f(x_1 ,x_2 ,\cdots ,x_n )$可以经过非退化的线性替换$X=RY$,其中

$$ X =\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} ,Y =\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} ,$$

化为下述标准型

$$\lambda _1 y_1^2 + \lambda _2 y_2^2 +\cdots +\lambda _n y_n^2 ,$$

这里$\lambda _i =\dfrac{\Delta _i}{\Delta _{i-1}}$,$i=1,2,\cdots ,n$,并且$\Delta _0 =1$.

$7$.($20$分)设$A,B$分别为数域$P$上的$m\times n$与$n\times s$矩阵,又$W=\lbrace B\alpha \mid AB\alpha =0 ,\alpha $为$P$上的$s$维列向量,即$\alpha \in P^{s\times 1} \rbrace $是$n$维列向量空间$P^{n\times 1}$的子空间,证明:

$$dim (W)=r(B)-r(AB).$$

证明:设$r(B)=b,r(AB)=a$,并记$U=\lbrace \alpha \mid \alpha \in P^{s\times 1},B\alpha =0\rbrace $,$V=\lbrace \alpha \mid \alpha \in P^{s\times 1},AB\alpha =0\rbrace $.

那么

$$dim(U)=s-b,dim(V)=s-a,U\subset V.$$

由上式可知,设$\alpha _1 ,\cdots ,\alpha _{s-b}$为$U$的一组基,那么这组基可以扩充为$V$的一组新基$\alpha _1 ,\cdots ,\alpha _{s-b} ,\alpha _{s-b+1} ,\cdots ,\alpha _{s-a}$.

这时,可知

$$W=L(B\alpha _{s-b+1} ,\cdots ,B\alpha _{s-a} ).$$

对于式子$\displaystyle \sum_{i=s-b+1}^{s-a} c_i B\alpha _i =0$来说,

$$\displaystyle \sum_{i=s-b+1}^{s-a} c_i B\alpha _i =B\left( \sum_{i=s-b+1}^{s-a} c_i \alpha _i \right) =0.$$

因此,根据$U$的定义,可知$\displaystyle \sum_{i=s-b+1}^{s-a} c_i \alpha _i \in U$.

由于$U\subset V$,故可知$\displaystyle \sum_{i=s-b+1}^{s-a} c_i \alpha _i \in V$.

因此,有

$$\displaystyle \sum_{i=s-b+1}^{s-a} c_i B\alpha _i =\sum_{i=1}^{s-b} c_i \alpha _i .$$

这时应该有:$c_i =0$,$s-b+1\leq i\leq s-a$.

因此,得到$B\alpha _{s-b+1} ,\cdots ,B\alpha _{s-a}$是线性无关的.

于是,

$$dim(W)=(s-a)-(s-b)=b-a=r(B)-r(AB).$$

$8$.($20$分)设$f(X,Y)$为定义在数域$P$上的$n$维线性空间$V$上的一个双线性函数,证明:$f(X,Y)=X’AY =\displaystyle \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i y_j$可以表示为两个线性函数$f_1 (X)=\displaystyle \sum_{i=1}^n b_i x_i$,$f_2 (Y)=\displaystyle \sum_{i=1}^n c_i y_i$之积的充分必要条件是$f(X,Y)$的度量矩阵$A$的秩$\leq 1$.

证明:$(1)$设$b=\begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} ,c=\begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$.

若$b=\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$,则

$$A=b\cdot c’ =\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \cdot (c_1 ,c_2 ,\cdots ,c_n )=\begin{pmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{pmatrix} ,$$

可知$r(A)=0$.

若$b\neq \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$,可设$b_1 \neq 0$,则

$$\begin{align}
A & =b\cdot c’ \\
& =\begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} \cdot (c_1 ,c_2 ,\cdots ,c_n ) \\
& =\begin{pmatrix} b_1 c_1 & \cdots & b_1 c_n \\ \vdots & \ddots & \vdots \\ b_n c_1 & \cdots & b_n c_n \end{pmatrix} \\
& \rightarrow \begin{pmatrix} c_1 & \cdots & c_n \\ 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{pmatrix}
\end{align}$$

可知$r(A)\leq 1$.

故$f(X,Y)=X’AY =\displaystyle \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i y_j$可以表示为两个线性函数$f_1 (X)=\displaystyle \sum_{i=1}^n b_i x_i$,$f_2 (Y)=\displaystyle \sum_{i=1}^n c_i y_i$之积是$f(X,Y)$的度量矩阵$A$的秩$\leq 1$的充分条件.

$(2)$若$r(A)=0$,则矩阵$A=0$.

若$r(A)=1$,则形如$(\alpha _1 ,\alpha _2 ,\cdots ,\alpha _n)$的矩阵$A$的列秩为$1$.

于是,$\alpha _1 ,\alpha _2 ,\cdots ,\alpha _n$的极大线性无关组仅有一个,可设为$\alpha _1 $,则$\alpha _2 ,\cdots ,\alpha _n$均可由$\alpha _1$表示.

那么,

$$\begin{align}
A & =(\alpha _1 ,\alpha _2 ,\cdots ,\alpha _n) \\
& =(\alpha _1 ,k_2 \alpha _1 ,\cdots ,k_n \alpha _1) \\
& =\alpha _1 \cdot (1 ,k_2 ,\cdots ,k_n ) \\
& =\begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{pmatrix} \cdot (1 ,k_2 ,\cdots ,k_n )
\end{align}$$

由上可知,存在向量$b=\begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{pmatrix} ,c=\begin{pmatrix} 1 \\ k_2 \\ \vdots \\ k_n \end{pmatrix}$使得

$$A=b\cdot c’.$$

故$f(X,Y)=X’AY =\displaystyle \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i y_j$可以表示为两个线性函数$f_1 (X)=\displaystyle \sum_{i=1}^n b_i x_i$,$f_2 (Y)=\displaystyle \sum_{i=1}^n c_i y_i$之积是$f(X,Y)$的度量矩阵$A$的秩$\leq 1$的必要条件.

综合$(1)$、$(2)$的结论,$f(X,Y)=X’AY =\displaystyle \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i y_j$可以表示为两个线性函数$f_1 (X)=\displaystyle \sum_{i=1}^n b_i x_i$,$f_2 (Y)=\displaystyle \sum_{i=1}^n c_i y_i$之积的充分必要条件是$f(X,Y)$的度量矩阵$A$的秩$\leq 1$.

[参考文献]

1 唐建国.向量到子空间的距离及其应用[J].大学数学,2004,20(5):74-79

文章目錄